Inhibition of growth by amber suppressors in yeast.

نویسندگان

  • S W Liebman
  • F Sherman
چکیده

Strains of the yeast Saccharomyces cerevisiae that contain highly efficient amber (UAG) suppressors grow poorly on nutrient medium, while normal or nearly normal growth rates are observed when these strains lose the supressors or when the suppressors are mutated to lower efficiencies. The different growth rates account for the accumulation of mutants with lowered efficiencies in cultures of strains with highly efficient amber suppressors. Genetic analyses indicate that one of the mutations with a lowered efficiency of suppression is caused by an intragenic mutation of the amber supressor. The inhibition of growth caused by excessive suppression is expected to be exacerbated when appropriate suppressors are combined together in haploid cells if two suppressors act with a greater efficiency than a single suppressor. Such retardation of growth is observed with combinations of two UAA (ochre) suppressors (Gilmore 1967) and with combinations of two UAG suppressors when the efficiencies of each of the suppressors are within a critical range. In contrast, combinations of a UAA suppressor and a UAG suppressor do not affect growth rate. Apparently while either excessive UAA or excessive UAG suppression is deleterious to yeast, a moderate level of simultaneous UAA and UAG suppression is not.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonsense suppressors of yeast cause osmotic-sensitive growth.

Many nonsense suppressors of Saccharomyces cerevisiae cause growth inhibition on hypertonic media. Eight tyrosine-inserting UAA (ochre) suppressors, eight tyrosine-inserting UAG (amber) suppressors, a leucine-inserting UAG suppressor, and a serine-inserting recessive lethal UAG suppressor cause osmotic sensitivity, whereas a serine-inserting UAA suppressor does not cause sensitivity. Although t...

متن کامل

Isolation and characterization of amber suppressors in yeast.

Nonsense suppressors were obtained in a haploid yeast strain containing eight nutritional mutations, that are assumed to be amber or ochre, and the cyc1-179 amber mutation that has a UAG codon corresponding to position 9 in iso-1-cytochrome c. Previous studies established that the biosynthesis and function of iso-1-cytochrome c is compatible with replacements at position 9 of amino acids having...

متن کامل

Drosophila nonsense suppressors: functional analysis in Saccharomyces cerevisiae, Drosophila tissue culture cells and Drosophila melanogaster.

Amber (UAG) and opal (UGA) nonsense suppressors were constructed by oligonucleotide site-directed mutagenesis of two Drosophila melanogaster leucine-tRNA genes and tested in yeast, Drosophila tissue culture cells and transformed flies. Suppression of a variety of amber and opal alleles occurs in yeast. In Drosophila tissue culture cells, the mutant tRNAs suppress hsp70:Adh (alcohol dehydrogenas...

متن کامل

Recessive lethal amber suppressors in yeast.

Recessive lethal amber suppressor mutations have been isolated in a diploid strain of Saccharomyces cerevisiae. Diploids carrying these suppressors upon sporulation yield asci with only two live spores, both lacking the suppressor. At least two classes of recessive lethal suppressors exist. Aneuploid strains carrying one wild type and one suppressor locus have been isolated and used in mapping ...

متن کامل

Temperature-sensitive nonsense suppressors in yeast.

A single mutation leads to temperature-sensitive amber and ochre suppression in yeast. This mutation maps in or near the SUP4 gene on chromosome X.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 82 2  شماره 

صفحات  -

تاریخ انتشار 1976